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a b s t r a c t

The hysteretic damping model cannot be applied to time domain dynamic simulations:

this is a well-known feature that has been discussed in the literature since the time

when analog computers were widespread. The constant equivalent damping often

introduced to overcome this problem is also discussed, and its limitations are stated, in

damping. An alternative model based on the nonviscous damping (NVD) model, but

with a limited number of additional degrees of freedom, is proposed, and the relevant

equations are derived. Some examples show applications to the rotordynamics field.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The damping properties of structures are usually modeled by introducing a term that is linear with the velocity into the
equation of motion. This model is usually referred to as viscous damping. When dealing with rotating structures or rotors
this approach leads to two separate terms, one proportional to the deformation velocity and one to the rotational velocity
and the displacements. The latter causes a circulatory matrix to be present in the linearized equation of motion and has a
destabilizing effect [1].

An alternative is to use the so-called structural or hysteretic damping model [2]. It is essentially based on the
observation that the energy losses in engineering materials undergoing cyclic loading are proportional to the square of the
amplitude and almost independent of frequency, at least within a wide frequency range.

There has been much discussion in the last 60 years on the validity of such assumptions, but the fact remains that the
dependence on the square of the amplitude allows for the introduction of linear models, and the independency of
frequency (which amounts to saying that the phase lag between stresses and strains is essentially constant and
independent of the frequency) allows for the definition of a constant complex stiffness, or complex Young’s modulus when
working at the level of material properties. Clearly, the last assumption cannot hold when the frequency of the hysteresis
cycle tends to zero.

The hysteretic damping model is usually applied by defining a complex elastic modulus, if at the level of the
characteristics of the material, or a complex stiffness, if at the level of the mechanical element. Under the assumptions
above, the real and imaginary parts of the former (usually referred to as E0 and E00) and their ratio, the loss factor

Z¼ E00

E0
,

are considered as constants and are characteristics of the material.
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Nomenclature

c viscous damping coefficient
ceq equivalent viscous damping
C damping matrix
C modal damping matrix
E Young’s modulus
f generalized force
G gyroscopic matrix
G modal gyroscopic matrix
i imaginary unit
k stiffness
K stiffness matrix
K modal stiffness matrix
m mass
M mass matrix
M modal mass matrix

n number of spring–damper branches
r vector of the complex coordinates
t time
x vector of the generalized coordinates
Z loss factor
g modal coordinates
s decay rate
F eigenvector matrix
o circular frequency, whirl speed
O spin speed

Subscripts

eq equivalent
n nonrotating
r rotating
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It is well known that the hysteretic damping model can be applied only to systems with harmonic motion [3], which
means that it can be introduced into equations of motion referred to the frequency domain but not to the time domain [4].
The impossibility of using the hysteretic damping model in time domain formulations is a severe limitation, in particular
because numerical simulation, based on the numerical integration in time of the equations of motion, is now a basic tool in
the dynamic analysis of systems of all types.

Another critical issue is that hysteretic damping may overestimate the damping properties of materials when the
vibration frequency is very low. Actually, if the vibration frequency tends to zero, it yields inconsistent results, which may
not be an issue in structural dynamics, but it is in rotordynamics because synchronous whirling is seen by the material
constituting the rotor as a vibration at vanishing frequency. This limitation has not prevented the use of the hysteretic
damping model in rotordynamics [5,6], but it has caused misunderstanding and incorrect interpretations [7].

The issue of looking for a model equivalent to hysteretic damping, but suitable for time domain formulations, was
particularly felt in the 1950s and 1960s, in connection with the use of analog computers. Analog computers could be used
only to study time-domain problems, and thus the usual hysteretic damping model could not be implemented on them.

Biot [8] and Caughey [9] showed that the model the former called ‘Voigt model of viscoelasticity’ and now often
referred to as the ‘Maxwell–Weichert model’ [10] can be applied both in structural dynamics and in rotordynamics. This
model can be applied in both frequency domain and time domain formulations and leads to results that, at least in a given
frequency range, are very close to those obtained using the hysteretic damping model.

A different approach was introduced by Bagley and Torvick [11,12]. It is based on a fractional derivative model and can
model the damping of actual engineering materials in a wide frequency range with good precision.

The GHM (Golla, Hughes, McTavish) model [13,14] is based on the Maxwell–Weichert model but is formulated in such a
way that it is suitable to be used in the context of the FEM (finite element method).

More recently, the term ‘nonviscous damping’ has been used for this kind of energy dissipation, mainly by Adhikari
[15–20], who applied it to study in detail the behavior of damped vibrating systems of different types. The term nonviscous

damping will be used throughout this paper. The aim of the present paper is to show that the nonviscous damping model
can be easily applied to both hysteretic rotating and nonrotating damping in rotordynamics even in the context of the
finite element modeling of complex rotors.
2. Simplified equivalent damping

2.1. Single-degree of freedom system

Consider a mass-spring–(viscous) damper system and a system with the same inertia and stiffness but with hysteretic
damping with loss factor Z. By comparing the equations of motion in the frequency domain, it is clear that the two systems
are exactly equivalent if the damping coefficient of the former is related to the loss factor of the latter by the relationship

ceq ¼
kZ
o
¼

k00

o
: (1)

Note that ceq, usually referred to as the ‘equivalent’ damping coefficient, is necessarily a positive quantity (if it were
negative, it would generate energy instead of dissipating it), and thus o must be positive. As pointed out in [7], failure to
recognize this fact resulted in many incorrect statements in the past.
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However, the usefulness of Eq. (1) is dubious: the value of the equivalent damping coefficient depends on the frequency
of vibration (to be more precise, to the frequency at which the material goes through its hysteresis cycle) and thus cannot
be introduced into time domain equations. Moreover, the equivalent damping tends to infinity when the frequency tends
to zero. This effect is discussed in detail in [3]. A common approximation is that of replacing the natural frequency of the
system, which in a single degrees of freedom system gives

on ¼

ffiffiffiffiffi
k

m

r

for the generic frequency o, obtaining

ceq ¼
kZ
on
¼ Z

ffiffiffiffiffiffiffi
km
p

: (2)

By introducing the damping ratio z, defined as the ratio between c and the critical damping ccr ¼ 2
ffiffiffiffiffiffiffi
km
p

, it follows that

zeq ¼
Z
2
: (3)

The rationale behind this approximation is the consideration that when damping is small, it influences the response of the
system only when it works close to its resonant frequency, and thus Eq. (2) yields a good approximation when damping is
important. When it yields a poor approximation, damping has at any rate little effect on the behavior of the system.

2.2. Systems with many degrees of freedom

The conversion from hysteretic to equivalent viscous damping can be performed by resorting to modal decomposition.
Consider a multi-degrees of freedom system with mixed viscous and hysteretic damping, whose frequency domain
dynamic stiffness matrix is

Kdyn ¼�o2Mþ ioCþKþ iK00: (4)

The eigenvector matrix U of the corresponding MK system allows for computing the modal mass and stiffness matrices M
and K. In a similar way, an imaginary modal stiffness matrix can be obtained as

K 00 ¼UTK00U: (5)

If either K00 ¼ ZK or the usual relationships for generalized proportional damping hold, K 00 is diagonal. If not, but the system
is lightly damped as usually occurs for structural damping, it is possible to obtain the modal hysteretic damping for each
mode by extracting the terms of K 00 lying on the main diagonal. Applying Eq. (2), an equivalent viscous damping matrix

Ceq ¼ diag
Kii
00

oni

 !
(6)

is readily obtained and back-transformed

Ceq ¼U�1T

CeqU
�1: (7)

Often it is not necessary to compute the equivalent damping of all modes but only that of the modes resonating in the
frequency range of interest. In this case a reduced modal transformation, obtained through the reduced matrix of the
eigenvectors U� can be used. Eq. (7) cannot be used directly in this case because U� is not square. The inverse
transformation can, however, be performed by using the matrix

M
�1

UTM

instead of U�1 [4]. The time-domain equation of motion is thus

M €xþðCþCeqÞ _xþKx¼ FðtÞ: (8)

Only hysteretic damping must be small: the viscous damping matrix C may be arbitrary large, and some (or even all) of the
modes may be overdamped. Clearly, if all modes are overdamped and hysteretic damping is low, the latter may be
neglected. The same procedure can be followed even in the case of nonlinear systems, provided that the viscoelastic
elements are linear.

2.3. Rotating systems

It is well known that rotating hysteretic damping is stabilizing in subcritical conditions and destabilizing in
supercritical ones [21,7] and also that, while viscous rotating damping causes a gradual decrease of stability with speed, in
the case of hysteretic rotating damping the decrease is abrupt when crossing a relevant critical speed [1]. Consider a
Jeffcott rotor with mass m and stiffness k, rotating at a spin speed O. Assume that both rotating and nonrotating damping
are present and that the imaginary parts of the stiffness are k

00

r for the former and k
00

n for the latter. The Campbell diagram



Fig. 1. Nondimensional Campbell diagram (a) and decay rate plot (b) for a hysteretically damped Jeffcott rotor with k
00

n ¼ 0 and k
00

n=k¼ 0:1.

The nondimensional whirl and spin speed and decay rate are o� ¼o
ffiffiffiffiffiffiffiffiffiffi
m=k

p
, O� ¼O

ffiffiffiffiffiffiffiffiffiffi
m=k

p
and s� ¼ s

ffiffiffiffiffiffiffiffiffiffi
m=k

p
.
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and the decay rate plot for the case with k
00

n ¼ 0 and k
00

r=k¼ 0:01 are reported in nondimensional form in Fig. 1. The Campbell
diagram is flat, and the decay rate plot shows an abrupt increase of the decay rate of the forward mode when crossing the
critical speed. This step causes instability ðRðsÞ40Þ because k

00

nok
00

r : the threshold of instability coincides with the critical
speed. In the case of a Jeffcott rotor, no threshold of instability would be present if k

00

n4k
00

r .
In the case of a general multi-degrees of freedom rotor, the decay rate plot would show multiple steps at the crossing of

the various critical speeds, and the threshold of instability, if present, would coincide with one of them. These features are
well known. If a time-domain computation, like that related to the ‘blade-loss’ problem or operation at variable speed
(like a quick critical speed crossing), has to be performed, the hysteretic damping must be transformed into a form of
damping allowing a time-domain formulation.

If the concept of simple equivalent damping seen above is used, the values of the equivalent damping coefficients are

cjeq
¼

k
00

j

on
¼ k

00

j

ffiffiffiffiffi
m

k

r
for j¼ n,r: (9)

The results for the same case are shown in nondimensional form in Fig. 1 with dashed lines. The Campbell diagram is flat
and approximates well the result obtained using the hysteretic damping model, but the decay rate plot is completely
different. The branch for the backward mode decreases steadily, while that for the forward whirling increases without
steps. The threshold of instability is the same in this case, but if the data were different it would have been different. In
particular, if k

00

n4k
00

r the system with hysteretic damping would have been stable at any speed, while that with equivalent
viscous damping would have a threshold of instability at

o� ¼ 1þ
k
00

n

k00r
: (10)

Similar results occur for multi-degrees of freedom rotors. The Campbell diagram and the decay rate plot for the rotor of
a small turbine used as Example 24.2 in [4] with hysteretic and equivalent damping are compared in Fig. 2. The loss factor
of the rotor is assumed to be Zr ¼ 0:04, while the two bearings are assumed to be hysteretically damped springs with
k=20 MN/m and Zn ¼ 0:06. The model was reduced through Guyan reduction, obtaining a model with eight complex
degrees of freedom. The computations were performed using the DYNROT code [22]. The transformation of hysteretic into
equivalent damping was performed using the option ‘Dyntrans’ built in the code.

It is clear that the two models yield the same Campbell diagram, but the decay rate plots are quite different. In particular, as
expected, the two forward branches, which have a critical speed in the range studied, show an abrupt decrease of the decay
rate (in absolute value). In this case, the stability of the first forward mode is decreased when the equivalent model is used,
while that of the second mode is increased. At vanishing speed, i.e., when the rotor reduces to a structure, the equivalent
model yields correct results, which become increasingly inaccurate with increasing speed. The rotor with hysteretic damping
is always stable, while that with equivalent viscous damping has a threshold of instability at about 38,000 rpm.

Two conclusions can be drawn from these examples:
�
 The viscous equivalent model seems adequate for the rotor at standstill. This confirms the observation in [23].

�
 When the rotor spins the equivalent viscous model remains adequate for computing the Campbell diagram (which is

fairly obvious because it is well known that the natural frequencies are barely affected by damping, if the latter is small



Fig. 2. Campbell diagram (a) and decay rate plot (b) for a multi-degrees of freedom rotor computed using the hysteretic and equivalent damping models.
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enough) but not for the computation of the decay rate plot and above all for assessing the stability of the system at high
speed.

A further observation is that the comparison is performed in a frequency domain computation because the hysteretic
model applies only in this case. The rationale for this way of proceeding is that if the hysteretic damping model simulates
the actual behavior of the system in harmonic motion properly, while the equivalent damping model is inadequate, the
latter should not be used when the system performs a motion of another type.

3. Nonviscous damping

The conclusions drawn in the previous section suggest looking for a different approach for transforming the hysteretic
damping in such a way that it can be used in the time domain computations. A general model for a material in which the
stress is not only dependent on the instant values of the strain and strain rate (like in visco-elastic materials) but also on
the past histories is

s¼ E e�
Z t

�1

Gðt,tÞ_eðtÞdt
� �

, (11)

where function Gðt,tÞ, which usually has the form Gðt�tÞ, is referred to as the damping kernel, retardation, heredity,
after-effect or relaxation function of the material [13–20]. This constitutive law accounts for both creep and relaxation.

A common expression for the damping kernel function is a sum of exponential terms

Gðt�tÞ ¼
Xm

i ¼ 1

cimie
�miðt�tÞ, (12)

where the m parameters mi are called relaxation parameters. If all mi tend to infinity, viscous damping is obtained.
The equation of motion of a system with a single degree of freedom, which includes nonviscous damping as well,

modeled using Eq. (11) together with Eq. (12) to express the damping kernel, is

m €xþc _xþ
Xm
i ¼ 1

cimi

Z t

�1

e�miðt�tÞ _xðtÞdtþkx¼ f ðtÞ: (13)

It is possible to demonstrate that each exponential term in Eq. (12) yields a force equivalent to it due to a spring with a
damper in series (the system in Fig. 3a). This model is thus equivalent to the Maxwell–Weichart model with a number m of
spring–damper branches, each one with a damper ci and a spring with stiffness ki ¼ cimi.

It is also possible to show that if the number of branches tends to infinity this model coincides, in the frequency domain,
with the hysteretic damping model [9,23]. Clearly, in any real world application the value of m must be limited (and
possibly small), and thus the hysteretic model can be simulated only in a given frequency range. In [23], it was shown that
this frequency range is about m decades wide, with a fairly flat imaginary part of the complex stiffness. In the same paper,
some criteria are given for the choice of the values of mi that must be done according to the requirements that the
frequency range is centered on the natural frequency of the system and is wide enough.

As clearly shown in Fig. 3a, a number m of degrees of freedom, corresponding to the displacements of points Bi, must
also be considered. They are usually referred to as internal or damping degrees of freedom. A system with a single degree of
freedom is thus transformed into a system with m+1 degree of freedom; while if the original system had n degrees of



Fig. 3. (a) The nonviscous damping model. (b) A different version of the same model, as used in the GHM method.
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freedom, the transformed system has n(m+1) degrees of freedom. However, because no mass is associated with points Bi,
the accelerations of the internal coordinates do not appear in the equations of motion, and the order of the resulting set of
equations is not 2n(m+1) but only n(m+2). When resorting to the state space approach, the state variables are thus
n(m+2). The equation of motion of the system with a single degree of freedom of Fig. 3a with mass m located in point C,
possibly a viscous damper with coefficient c, and constrained in point A is

M €xþC _xþKx¼ fðtÞ, (14)

where, remembering Eq. (13), the relevant matrices and vectors are

x¼

xC

xB1

xB2

. . .

8>>><
>>>:

9>>>=
>>>;

, M¼

m 0 0 . . .

0 0 . . .

0 . . .

symm: . . .

2
66664

3
77775, fðtÞ ¼

Fc

0

0

0

8>>><
>>>:

9>>>=
>>>;

,

C¼

cþ
Pm

i ¼ 1 ci �c1 �c2 . . .

c1 0 . . .

c2 . . .

symm: . . .

2
66664

3
77775, K¼

k 0 0 . . .

m1c1 0 . . .

m2c2 . . .

symm: . . .

2
66664

3
77775:

Because the states are only mþ2, the state equation is

_vC

_xC

_xB

8><
>:

9>=
>;¼M��1A�

vC

xC

xB

8><
>:

9>=
>;þM��1

FC

0

0m�1

8><
>:

9>=
>;, (15)

where

M� ¼

m 0 C12

0m�1 0m�1 C22

0 1 01�m

2
64

3
75, A� ¼�

C11 K11 01�m

C21 0m�1 K22

�1 0 01�m

2
64

3
75, (16)

and the submatrices Cij and Kij of the damping and stiffness matrices are such that C11 and K11 are numbers, C12 is a row
matrix with m columns and C22 and K22 are m�m diagonal matrices. This form of the state equations is not unique, and
many different forms, all essentially equivalent, can be found in the literature (e.g. [17]). In the case of systems with many
degrees of freedom, the coordinates xC and xBi and the force Fc are substituted by vectors of order n and parameters m, c and
k are matrices of order n�n. Note that in a complex system the nonviscous damping parameters ci and mi may be different
in the various elements. It is then possible to use a larger number of nonviscous damping parameters, setting all elements
in each matrix ci and mici equal to zero except for those of the material of the relevant element. These matrices are thus
rank deficient, but this does not cause problems, except for the fact that, with the number of coefficients m larger, the size
of all matrices is quite large as well.

It must be stated that the increase of the number of states of the system, while increasing the number of the poles and
the corresponding number of modes, does not affect the number of modes with an oscillatory character. The added modes
are all overdamped, and their poles are close to the real poles mi of the various spring–damper branches.

A different, although essentially equivalent, approach is followed by the GHM method: instead of introducing m spring–
damper branches, a number m/2 of mass-spring–damper branches are added (Fig. 3b) [13,14]. In [14], they are referred to
as mini-oscillators, but their free behavior is not oscillatory because they are overdamped. In this way, the mass matrix is
not singular, and the usual way for building the state space dynamic matrix can be followed. Anyway, the total number of
state variables is again n(m+2).
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4. The Jeffcott rotor with nonviscous damping

Consider the same Jeffcott rotor studied in Section 2.3, with both rotating and nonrotating hysteretic damping. Rotating
and nonrotating damping must be taken into account separately: if each is modeled using m spring–damper systems,
a total of 2m points Bj and then internal degrees of freedom, must be added. In the following, subscripts nj are used for the
points located on the branches simulating nonrotating damping and rj for those in the rotating dampers. The complex-
coordinate vector [11] is thus

q¼ ½rA rBn1
rBr1

rBn2
rBr2
� � � rBnn

rBrn
�T: (17)

The time-domain equation of motion is

mM� €qþ
ffiffiffiffiffiffiffi
km
p

ðC�nþC�r Þ _qþðkK��jO
ffiffiffiffiffiffiffi
km
p

C�r Þq¼ ½mO2eiOtþ fnðtÞ�F
�, (18)

where the nondimensional mass, stiffness and damping matrices are

M� ¼ diag½1 0 0 . . . 0�, (19)

K� ¼

1þZn

P
8jgnjþZr

P
8jgrj �Zngn1 �Zrgr1 . . . �Zrgrn

Zngn1 0 . . . 0

Zrgr1 . . . 0

. . . 0

symm: Zrgrn

2
6666664

3
7777775

, (20)

C�n ¼ Zndiag 0
gn1

dn1
0
gn2

dn2
0 . . .

gnn

dnn
0

� �
, (21)

C�r ¼ Zrdiag 0 0
gr1

dr1
0
gr2

dr2
. . . 0

grn

drn

� �
, (22)

and

Zn ¼
k
00

n

k
, Zr ¼

k
00

r

k
, dj ¼ að2j�n�1Þ=2: (23)

Vector F� is

F� ¼ ½1 0 0 . . . 0�T: (24)

Because the mass matrix M� is singular, a reduced complex state vector must be introduced

z¼ ½v rT�T ¼ ½v rA rBn1
rBr1

rBn2
. . . rBrn

�T, (25)

where v¼ _rA. By partitioning all matrices into four submatrices, in such a way to keep the first degree of freedom, with
which a finite mass is associated, separated from the others, the dynamic matrix of the system can be shown to be

A� ¼�

1 0 0

0 0 ðC�n22þC�n22Þ

0 1 0

2
64

3
75
�1 0 K�11 K�12

0 K�21 K�22�iO�C�r22

�1 0 0

2
64

3
75, (26)

where the nondimensional spin speed O� is

O� ¼O
ffiffiffiffiffi
m

k

r
:

Eq. (26) is justified by remembering that M�11 ¼ 1 and that C�r11 (a number), M�12 and C�r12 (row matrices), M�21 and C�r21

(column matrices) and M�r22 and C�r22 (square matrices), all vanish. The same is true for the matrices of nonrotating damping.
The eigenvalues of the dynamic matrix A� are the nondimensional roots of the system: their imaginary parts are now

the nondimensional whirl frequencies, and their real parts the nondimensional decay rates. In the case of a single damper,
gn1 ¼ gr1 ¼ 2 and the dynamic matrix is reduced to

A� ¼

0 �1�2Zn�2Zr 2Zn �2Zr

1 0 0 0

0 1 �1 0

0 1 0 �1þ iO�

2
6664

3
7775:

The nondimensional Campbell diagram and decay rate plot of the same Jeffcott rotor studied in Section 3 (Fig. 1) are
reported in Fig. 4. The solution for hysteretic damping is compared with that for a nonviscous damper with m=1, 2 and 3.
While in the hysteretic damping case there are only two solutions, one for forward and one for backward whirling, by
adding m degrees of freedom, a further m solutions are found (only m and not 2m because the added states are only m). The



Fig. 4. Nondimensional Campbell diagram (a) and decay rate plot (b) for a Jeffcott rotor with hysteretic rotating damping with loss factor Z¼ 0:01.

The solution for hysteretic damping is compared with that for a nonviscous damper with m=1, 2 and 3.
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added solutions are, however, synchronous and stable whirling motions with a high decay rate and are therefore of little
interest. They correspond to the nonoscillatory solutions of the vibrating system with NVD [14], and they are actually
nonoscillatory in the rotating plane. The Campbell diagram is thus essentially the same as that for hysteretic damping,
while in the decay rate the abrupt step typical of hysteretic damping is replaced with a more gradual passage from
subcritical stability to supercritical instability of forward whirling. By increasing the number of dampers the passage is
more abrupt, and with m=3 the step is almost restored.

If n=4 and O� ¼ 0, the values of s� are �0.004471.0152i (the poles of the original system), plus �31.6222, �3.1584,
�0.3124, �0.0311. The absolute values of the latter four are very close to the four values of bi.

When O� ¼ 4, the values are �0.0048�1.0202i for the backward whirl, 0.0049+1.0183i for the forward (unstable)
whirl, and then �31.6223+4.0001i, �3.1626+4.0016i, �0.3165+4.0000i, �0.0317+4.0000i for the additional modes due
to the internal degrees of freedom. As already stated, they are practically synchronous whirling motion, i.e., nonoscillatory
motions in the rotating frame. There are only four because only rotating damping was considered.
5. Rotors with many degrees of freedom

Consider a multi-degrees of freedom rotor, with both viscous and hysteretic damping. Neglecting hysteretic damping,
under the assumption of axial symmetry of both the rotor and the stator of the machine, the time-domain equation of
motion, written in complex coordinates [1], is

M €qþðiOGþCnþCrÞ _qþðK�iOCrÞq¼ FðtÞ, (27)

where the gyroscopic matrix G is symmetric because complex coordinates are used. The eigenvector matrix U of the
corresponding MK system allows for the computation of the modal matrices, in this case including also the modal
gyroscopic matrix G, which is in general nondiagonal. After performing the modal transformation, two nonviscous
dampers, a rotating and a nonrotating one, can be added to each modal system to simulate both rotating and nonrotating
damping. By doing so, a number 2m of internal degrees of freedom must be added for each mode considered, if m is the
number of branches of each one of the nonviscous dampers. Note that not all modal systems need to be damped, and that it
is not necessary to add the same number of dampers to all modes.

By partitioning the matrices in the same way seen for the Jeffcott rotor, and remembering that several submatrices
vanish, the modal equation of motion is thus

M 0

0 0

" #
€g

€xB

( )
þ
�iOGþCnþCr 0

0 Cr22þCn22

" #
_g

_xB

( )
þ

KþK11�iOCr K12

K21 K22�iOCr22

" #
g

xB

( )
¼

F

0

( )
, (28)

where to the modal complex coordinates g another set of complex coordinates xB has been added. The overlined matrices
are the modal matrices of the system with viscous damping, while the nonoverlined ones are the matrices added to
simulate hysteretic damping. Generally speaking G, Cn and Cr are not diagonal. For each mode considered (the rth mode is
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considered in the formulas), matrices C and K have a structure of the kind

K¼K
00

nrr

P
8jgnj �gn1 0 . . . 0

gn1 0 . . . 0

0 . . . 0

. . . 0

symm: 0

2
6666664

3
7777775
þK

00

rrr

P
8jgri 0 �gr1 . . . �grn

0 0 . . . 0

gr1 . . . 0

. . . 0

symm: grn

2
6666664

3
7777775

, (29)

Cn ¼K
00

nrr
diag½0 gn1=dn1 0 . . . 0�, (30)

Cr ¼K
00

rrr
diag½0 0 gr1=dr1 . . . grn=drn�: (31)

As already stated, out of the four submatrices of each damping matrix, only C22 does not vanish. If a solution in the original
coordinates (plus obviously coordinates xB) is required, it is possible to resort to the obvious equation

x

xB

( )
¼

U 0

0 I

� �
g

xB

( )

to back-transform the matrices.
Note that the back-transformation is still possible even if a reduced number of modes has been considered, and hence

the reduced matrix of the eigenvectors U� is not square. In this case

g

xB

( )
¼

M
�1

UTM 0

0 I

" #
x

xB

( )
:

No errors due to gyroscopic effects and large viscous damping are introduced if all modes are used, so that the procedure
can be used for overdamped systems or strongly gyroscopic ones as well. What is required is only that the hysteretic
component of damping is small.

However, it is possible to use a limited number of modes and then to back-transform the equivalent damping matrices
to perform the relevant computation with reference to the physical complex coordinates q, suitably augmented with the
complex coordinates xB. In this mode, the gyroscopic and viscous damping matrices need not be transformed into modal
coordinates. To reduce the number of coordinates, the high frequency modes can be modeled using a smaller number of
points B, and the same can be said for nonrotating damping.

6. Examples

6.1. Example 1: rotating beam on elastic supports

Consider a beam with an annular cross section (inner and outer diameters 60 and 50 mm) with a length of 1.5 m,
constrained at the ends by two elastic supports with a stiffness of 2 MN/m. The beam is made from steel (E=211 GPa,
r¼ 7810 kg=m3, n¼ 0:3). The material of the beam has a loss factor Zr ¼ 0:02, while the elastic supports have a loss factor
Zn ¼ 0:06. A nonrotating beam with slightly different supports was studied in [23]. By modeling the beam with 3
Timoshenko beam elements and eliminating the rotational degrees of freedom through a Guyan reduction, a system with
only four degrees of freedom is obtained. The natural frequencies of the nonrotating beam are

on ¼

370:2 rad=s¼ 58:92 Hz,

979:6 rad=s¼ 155:91 Hz,

1718:6 rad=s¼ 273:53 Hz,

3029:8 rad=s¼ 482:21 Hz:

8>>>><
>>>>:

The damped poles of the nonrotating system with hysteretic damping are

s¼

�6:07370:3i rad=s,

�25:27980:1i rad=s,

�40:771719:1i rad=s,

�43:173030:1i rad=s:

8>>>><
>>>>:

By using the ‘equivalent damping’ approach the poles are

s¼

�6:07370:2i rad=s,

�25:37979:3i rad=s,

�40:771718:1irad=s,

�43:173029:5i rad=s:

8>>>><
>>>>:
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If a nonviscous damper with m=3 is added to each modal system, the system has a total of 28 degrees of freedom.
However, there are only 32 states, and the poles are

s1,...,8 ¼

�6:07378:5i rad=s,

�25:27999:7i rad=s,

�40:671754:6irad=s,

�42:573098:7i rad=s,

8>>>><
>>>>:

s9,...,12 ¼

�35:02 rad=s,

�37:02 rad=s,

�89:41 rad=s,

�97:96 rad=s,

8>>>><
>>>>:

s13,...,16 ¼

�158:13 rad=s,

�171:86 rad=s,

�288:74 rad=s,

�302:98 rad=s,

8>>>><
>>>>:

s17,...,20 ¼

�362:32 rad=s,

�370:22 rad=s,

�946:28 rad=s,

�979:62 rad=s,

8>>>><
>>>>:

s21,...,24 ¼

�1664:95 rad=s,

�1718:62 rad=s,

�2973:47 rad=s,

�3029:80 rad=s,

8>>>><
>>>>:

s25,...,28 ¼

�3700:19 rad=s,

�3702:22 rad=s,

�9787:68 rad=s,

�9796:20 rad=s,

8>>>><
>>>>:

s29,...,32 ¼

�17172:50 rad=s,

�17186:24 rad=s,

�30283:49 rad=s,

�30298:02 rad=s:

8>>>><
>>>>:

The first eight poles are complex and are essentially the same seen above except for a slight increase of the frequency due
to the added stiffness. The remaining 24 are real as well as negative and correspond to much damped nonoscillatory modes
that have practically no importance.

The Campbell diagram is little influenced by damping and, due to the negligible gyroscopic effect, is almost completely
flat. It is not reported here. The decay rate plot is reported in Fig. 5. The lines labeled (H) describe the behavior of the
system with hysteretic damping. At the critical speed, the decay rate of the first forward mode has an abrupt increase. It,
however, remains negative, and the rotor is stable at all speeds. The lines labeled (E) are related to the simplified
equivalent damping. The behavior is that typical of viscous damping: a gradual increase (decrease in absolute value) of the
decay rate in forward whirling with a threshold of instability in the supercritical regime. While at standstill, the equivalent
viscous damping is actually equivalent; when the system rotates the two forms of damping yield quite different results.
This behavior is true not only in synchronous whirling, where the applicability of hysteretic damping is questionable
because the frequency o�O of the hysteresis cycle vanishes, but at all speeds. In particular, at high speeds, the two
solutions diverge. The equivalent model leads to a finite value of the threshold of instability, contrary to what happens
with the hysteretic model. The curves labeled as (NV) were obtained by applying eight nonviscous dampers (four rotating
and four nonrotating) to the four modal systems. Each of them has three spring–damper branches, tuned at the modal
frequency and at frequencies 1/10 and 10 times the modal frequency. The total number of complex states of the system is
Fig. 5. Decay rate plot for the rotor described in example 1. The curves for hysteretic (H), equivalent (E) and nonviscous damping (NVD) are reported.



Fig. 6. Response of the rotor of Fig. 7 to a shock. Comparison between equivalent and nonviscous damping.

Fig. 7. Same as Fig. 2 but for hysteretic and nonviscous damping.
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32 instead of 8. The behavior is much more similar to that related to hysteretic damping. The step of the decay rate is
present, although less abrupt, and the threshold of instability is not present.

A shock-like excitation due to a nonrotating force growing linearly to 10,000 N in 11 ms is applied to a point at 500 mm
from one end when the shaft rotates at 1400 rad/s. The response to the shock must be computed through numerical
integration in time of the equations of motion. The results, in terms of the time history of the amplitude of the
displacement in the rotation plane of the point where the shock is given, are plotted in Fig. 6. In case of nonviscous
damping, the shock triggers a circular synchronous whirl, which stabilizes in time to a constant amplitude and then slowly
decreases asymptotically to zero (this behavior is not shown in the figure because it takes several seconds). The oscillation
slowly dampens out as well. In the case of the equivalent damping, because the rotor operates above its threshold of
instability, the synchronous whirling grows without bounds, while the oscillations die out in a short time.
6.2. Example 2: rotor with nonnegligible gyroscopic effect

Consider the same multi-degrees of freedom rotor studied in Section 3 (Fig. 2). The results obtained using the NVD
model are shown in Fig. 7. Three rotating and three nonrotating nonviscous dampers have been added for each mode.
Because four modes were considered, the number of internal degrees of freedom or states of the system is 24, which must
be added to the four degrees of freedom if the computation is performed in modal coordinates, for a total of 32 states. If the
equations are back-transformed, there are eight degrees of freedom for the original system, for a total of 40 states. The
computation was performed using both modal and nonmodal coordinates, obtaining exactly the same results for the four
forward and four backward modes shown in the plot.

The nonviscous damper model has almost the same Campbell diagram as the one obtained using hysteretic damping.
The small differences are due to the fact that the former model adds also some stiffness to the system and hence slightly
modifies the natural frequencies. The decay rate is much closer to the one for hysteretic damping. In particular, it is
characterized by abrupt decreases of the decay rate of the first two modes when they cross the relevant critical speeds.
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Although not being exactly equal to the plot obtained for the hysteretic damping model, it at least corrects the largest
errors introduced by the conventional equivalent damping model, in particular at high speed.

7. Conclusions

The nonviscous damping model, with a finite number of viscous dampers, allows for writing equations of motion in the
time domain starting from the hysteretic damping formulation. It approximates the hysteretic behavior over a wide
frequency range well, at the cost of a number of additional (usually referred to as internal or hidden) degrees of freedom.

Obviously it is impossible to compare the results of this model with those obtained through the hysteretic model in
conditions other than harmonic motion because the latter cannot be used. However, when the system performs harmonic
motions the two models yield reasonably close results.

One limitation is that hysteretic damping must be small, particularly when the system has many degrees of freedom,
and the nonviscous dampers are applied to decouple the modal systems. However, it is possible to perform the modal
transformation only where the hysteretic damping is concerned, and, if there are other forms of damping, they can be
added later, after back-transforming the model to the ‘physical coordinates’ plus the internal ones. In this way, no small
damping assumptions are required for the other forms of damping.

The other limitation of hysteretic damping, linked with its poor performance at low frequency, is circumvented. In this
sense, the nonviscous damping model is better than the original hysteretic damping model when the system performs low
frequency motions.

The nonviscous damping model is generalized here for rotordynamics. When dealing with rotating machinery the
rotating damping must be dealt with separately from nonrotating damping, and thus the introduction of a larger number of
internal degrees of freedom is required: for each mode, the number of spring–damper branches, and thus the number of
internal degrees of freedom, is doubled if the rotating and nonrotating modal damping are modeled in the same way. This
problem can be mitigated by using a smaller number of internal degrees of freedom for nonrotating damping because the
problems linked with hysteretic damping are more serious in the case of rotating damping.

While the inconsistency of hysteretic damping in low frequency motion may be marginally important in structural
dynamics, it constitutes a serious drawback in rotordynamics. In situations in which the whirl frequency is close to the spin
speed (almost-synchronous whirling), the frequency of the hysteresis cycle is close to zero, which leads to a questionable
applicability of the hysteretic damping concept. The fact that hysteretic rotating damping may cause a threshold of
instability equal to one of the critical speeds is due to this problem and may be regarded as an oversimplification linked
with the type of model.

For rotating damping, the nonviscous damping model is thus actually better than the original model even in harmonic
motion, apart from being needed when solving time-domain equations like those encountered in nonsteady-state motion,
for instance when accelerating through a critical speed or in the ‘blade-loss’ problem.

The present model behaves better than the usual constant equivalent damping model not only at the critical speed
crossing but also at high speed. In particular, it retains the property of hysteretic damping of either locating the threshold
of instability close to a critical speed or granting stability at all speeds, while viscous damping always causes instability at a
speed large enough (even if in many cases this occurs at a speed well in excess of the actual one).

It is well known that the prediction of high speed stability of rotors is still problematic mostly due to the uncertainties
about how to model damping. The present model offers a theoretical alternative to the simpler viscous damping model.
Only experimentation will validate the results obtained through the two approaches.
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